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Abstract—In this paper we discuss a parallel hybrid de-
terministic/Monte Carlo (MC) method for the solution of the
neutron transport equation in two space dimensions. The
algorithm uses an NDA formulation of the transport equation,
with a MC solver for the high-order equation. The scalability
arises from the concentration of work in the MC phase of the
algorithm, while the overall run-time is a consequence of the
deterministic phase.
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I. INTRODUCTION

In this paper we report new scalability results for a hybrid
deterministic/MC algorithm for the multigroup k-eigenvalue
problem in neutron transport in two space dimensions. Our
hybrid deterministic/MC solver [1], [2] is based on the
Nonlinear Diffusion Acceleration (NDA) formulation of the
problem [3]. The new features of the solver, as described
in [1], [2] are faster and more accurate Jacobian-vector
products and the use of MC simulation for the transport
sweeps.

The equation is

Ω̂ ·∇ψg(Ω̂, ~r) + Σt,gψg(Ω̂, ~r)

= 1
4π

∑G
g′=1 Σg

′→g
s φg′(~r)

+
χg

4πkeff

∑G
g′=1 νΣf,g′φg′(~r),

(1)

with appropriate boundary conditions. This is a generalized
eigenvalue problem. We are interested in the dominant
(largest) eigenvalue keff and corresponding eigenfunction.

In (1), ~r ∈ D ⊂ R3, ψg is the group angular flux and φg =∫
4π
ψgdΩ is the group scalar flux for groups g = 1, · · · , G.

Σt,g , Σg
′→g
s , and Σf,g are the total, inscattering and fission

cross-sections for group g. χg is the fission spectrum, and
ν is the mean number of neutrons emitted per fission event.

There has been much recent work on Jacobian-free
Newton-Krylov and hybrid deterministic/MC algorithms for
the k-eigenvalue problem [1]–[8]. This paper is part of that
activity.

In the remainder of the paper we briefly describe the
hybrid NDA formulation of the problem in § II. We refer
to [1]–[4], [6] for details and descriptions of discretizations

and boundary conditions. Our interest here is parallel per-
formance, and in § III we report on new scalablity for a
problem in two space dimensions.

II. ALGORITHMS

The Nonlinear Diffusion Acceleration (NDA) algorithm
reformulates the problem as a nonlinear equation for the
group scalar fluxes [9]. In NDA, as with other nonlinear
accelerators, [9]–[13], we express the fixed point problem for
the flux into a “low-order” nonlinear diffusion equation. The
low-order equation is coupled to the “high-order” transport
equation to enforce consistency. The high-order equation is
a fixed-source problem with no scattering, and is therefore
easier to solve with a MC approach than the original
transport equation [1], [2], [14]–[17].

As is standard, we will express (1) in operator notation
as

LΨ =M
[
S +

1

keff
F
]

Φ. (2)

In (2), L = Ω̂ · ∇+ Σt, M = 1
4π , S = Σs, and

F = χνΣf .

Ψ is the vector of group angular fluxes, and Φ is the vector
of group scalar fluxes. A simple power method iteration can
converge very slowly. The NDA formulation will converge
more rapidly.

NDA splits the transport problem into a ”high-order”
transport problem with no scattering in the right side of
the equation and a ”low-order” diffusion equation. The
resulting system of equations is nonlinear, but iterative
methods converge more rapidly for the NDA system than
for the original problem [3], [9]. We will express the NDA
formulation as a eigenvalue problem for the low-order flux
Φ.

Given Φ and keff , we compute a high-order angular flux
ΨHO, scalar flux ΦHO, and current JHO by

ΨHO = L−1M
[
S +

1

keff
F
]

Φ,

ΦHO =

∫
ΨHOdΩ̂,

~JHO =

∫
Ω̂ΨHOdΩ̂.



Define

D̂g =
~JHOg + 1

3Σt,g
∇φHOg

φHOg
. (3)

Note that D̂ depends on Φ through the high order flux and
current. The low-order eigenvalue problem is

∇·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→gs )φg

=
∑
g′ 6=g Σg

′→g
s φg′ +

χg

keff

∑G
g′=1 νΣf,g′φg′

(4)

If the function Φ and scalar keff we used to solve the high-
order problem also solve the low-order problem, then we
have solved the k-eigenvalue problem.

We write (4) as

DΦ− SΦ− 1

keff
χFΦ = 0, (5)

where D is the differential operator and S the scattering
terms. The method proposed in [1]–[3] formulates the eigen-
problem as nonlinear equation for Φ by using

keff =

∫
FΦ dV

to obtain the equation

F (Φ) = DΦ− SΦ− χFΦ∫
FΦ dV

= 0.

A. Hybrid NDA

In the results we report in § III, we use the hybrid
approach proposed in [1], where a MC simulation is used
to solve the scattering-free fixed source high order problem,
and thereby compute D̂. We motivate this approach in this
section.

Traditional methods for computing the dominant eigen-
value of neutron transport equation are deterministic; we
employ discretization in space, angle, and energy and solve
the eigenvalue problem in discrete space. The discretization
of each of these variables can lead to errors which may result
in non-physical solutions. Currently, we only concern our-
selves with addressing the spatial and angular discretization
errors.

The standard spatial discretizations, the diamond differ-
ence method or the step-characteristics method, can both
be insufficient at times. The diamond difference method is
second-order accurate, however, if the mesh is too coarse,
this differencing technique can lead to negative fluxes. The
step-characteristics method guarantees positive solutions ev-
erywhere in the domain, however is only first order accurate
[18] The Sn angular discretization can yield “ray effects” or
biasing along the discrete angles in our quadrature set [18],
[19]. These ray effects can only be remedied by increasing
the number of angles in the quadrature set, however this is
limited as beyond a certain point the Sn quadrature contains
negative weights, leading to instability.

Each of these issues can be avoided entirely by opting to
use the MC method. The MC method allows for a continuous
treatment of both the spatial and angular variables (and
energy, too). While MC simulations have stochastic noise,
they have the potential to provide more physically accurate
solutions than deterministic methods. Furthermore, these
methods are highly parallelizable and their implementation
lends itself to emerging computing architectures.

In a pure MC k-eigenvalue calculation, one realizes the
power method by simulating a sequences of “batches” of
particles. The computation begins with an approximation
to the fission source, Fφ. Each batch takes as an input a
fission source distribution and outputs a new fission source
distribution. Once the eigenvector has begun to converge, we
begin to average the fission source distributions from each
iteration to damp MC noise. The eigenvalue is the ratio of
the number of particles born out of fission events from one
neutron generation to the next.

In the hybrid method, in which the MC simulation only
takes place in order to approximate the inversion of L, we
only need to simulate the streaming of particles. All ab-
sorption, scattering and fission events are controlled through
the low-order system. This allows for a highly simplified
implementation of the MC algorithm. The logic is removed
almost entirely and particle histories are significantly shorter
than traditional MC particle histories.

III. RESULTS

We report results on the LRA-BWR test problem from
[3], [20], [21]. This is a two group, six region problem with
five different materials. The system is a 165cm square. We
use 1cm square cells in both directions. Figure 1 illustrates
the grid and the material distribution.

Figure 1.
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The lower-left corner of the domain has a reflective
boundary, whereas the remaining boundaries are all vacuum.



Our MC implementation uses Continuous Energy Deposition
(CED) tallies [22], which we found to be very efficient in our
previous studies [1], [14]. We solve the low-order equation
with at Newton iteration. This approach was refered to NDA-
NCA in [1], [3], [14].

The code has Matlab and C++ components. The Matlab
driver takes the material and domain data and creates the
NDA-NCA-MC initial iteration with enough power method
iterations to drive the eigen-residual for the lower-order
problem to 10−3 (no more than five). At each NDA-NCA-
MC iteration, the driver calls the C++ parallel MC code
to simulate particle histories. The C++ code tallies and
averages the scalar flux and current which are used to pro-
vide a closure for the LO problem. The Matlab driver then
reads the scalar flux and current from text files, computes
the boundary conditions and builds the discrete low-order
problem. At this point, the driver executes a single Newton
iteration to update the scalar flux for the next iteration.

The communication between the Matlab driver and the
C++ MC code is via file I/O. The driver builds the source
term for the MC code from its computed scalar flux and
writes it and the domain parameters to a file. The C++ code
reads the domain parameters and distributes these to each
node. On each node, the source term is read in from the
text file and the source, domain parameters and number of
histories per thread are distributed to each core via OpenMP.
Each core stores an entire copy of the domain configuration
and simulates its share of the neutron histories. Each core
tallies a copy of the scalar flux and current before collapsing
this data to a total, on-node scalar flux and current. We then
use a call to MPI Reduce to compute an average scalar flux
and current across cores. Finally, the C++ code writes these
data to a file for the driver.

The computations were done on an HP DL585G7 Server
running CentOS 6.3 and gcc 4.7.2. Each node has four 1.9
GHZ AMD 6168 twelve-core processors per node with a
512KB cache and 64GB of memory.

In Table I we tabulate weak scaling results of a single
transport sweep. This is an accurate surrogate for the full
eigensolve, for which the results with fewer nodes require
an excessive amount of time.

Table I
WEAK SCALAING OF GROUP 1 TRANSPORT SWEEP

nodes time (secs) speedup
1 85.1665 100.0000
2 85.2150 99.9431
4 85.4985 99.6117
8 85.6725 99.4094

12 85.7175 99.3572
20 86.0830 98.9353

In Figure 2 we plot the results of a strong scaling study
for the entire eigensolve, using 10 nodes as the base case.
The plot clearly shows that the strong scaling is excellent.

Finally, we plot the results of the solve in Figure 3.

Figure 2. Strong Scaling for Eigensolve
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IV. CONCLUSION

In this paper we describe a parallel nonlinear solver for
the NDA formulation of the k-eigenvalue problem in neutron
transport. The solver is a hybrid deterministic/MC method.
We demonstrate the method’s good scalability properties for
a two-dimensional benchmark problem.
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